The Benefits of Pump Storage in the South African Grid

C Van Dongen, B Bekker

June, 18, 2019

Flexible Generation

Uncertainty in electricity demands are balanced in real-time using fast reacting flexible generators such as hydro and gas turbines.

IRP more flexible generation will be required to integrate the increased variable renewable energy generation & provided by gas turbines.

Verify renewables, gas and diesel combination.

Market based gas exposes the economy to a number of potential risks.

Pumped Storage Schemes (PSS) as an alternative technology for peaking and flexible generation.

I

Contents

PSS International

PSS in South Africa

Future Plan for South Africa

LCOEs of competition technologies

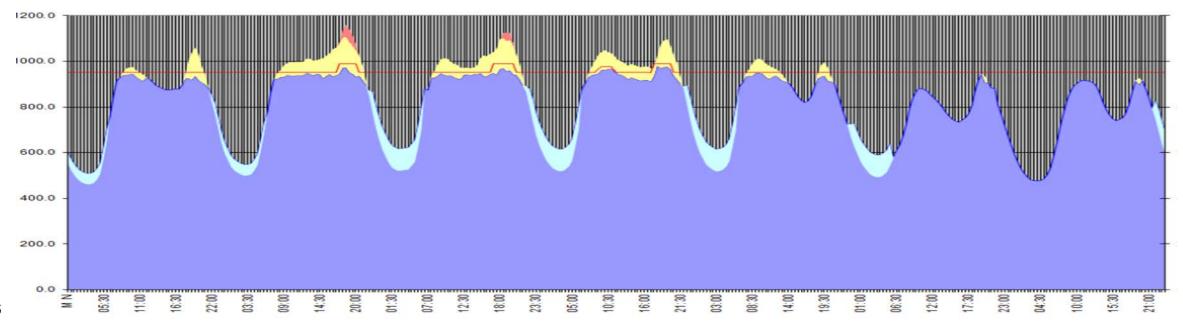
Conclusion

PSS International

Pumped Storage History

161GW of PSS with another 78GW before 2030.

PSS technology development started after World War II. Populations increased, rapid economic growth reshaped demand curves. Increasing peak to baseload ratio & creating more distinctive seasonal peaks.

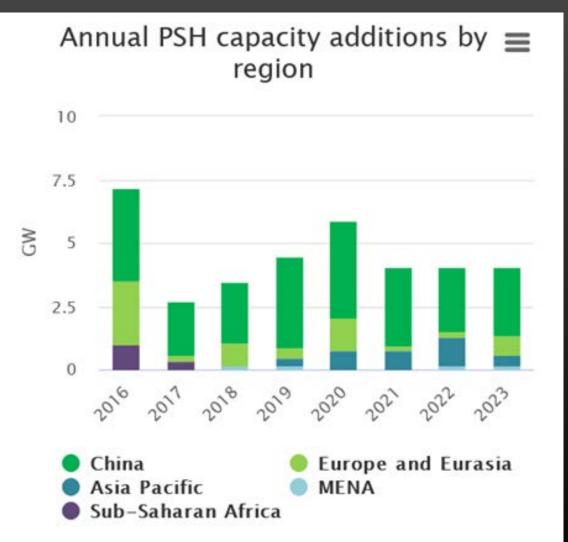

1960's thermal generators were suited for constant high output, optimise efficiency, Excessive ramping leads to more equipment stress & increased maintenance cost.

Dramatic increases in the price of oil & natural gas. Powerplant and Industrial Fuel Use Act- limiting options to provide load-following and peaking services from gas turbines.

Pumped Storage History


Many PSS projects were built between 1960 and 1980 also driven by nuclear energy development as PSS absorbed the surplus power and generated peaking capacity.

PSS ideally balanced the load and allowed nuclear and coal to operate at peak efficiencies. This resulted in PSS been evaluated as an alternative to fossil-fueled intermediate load and peaking units.



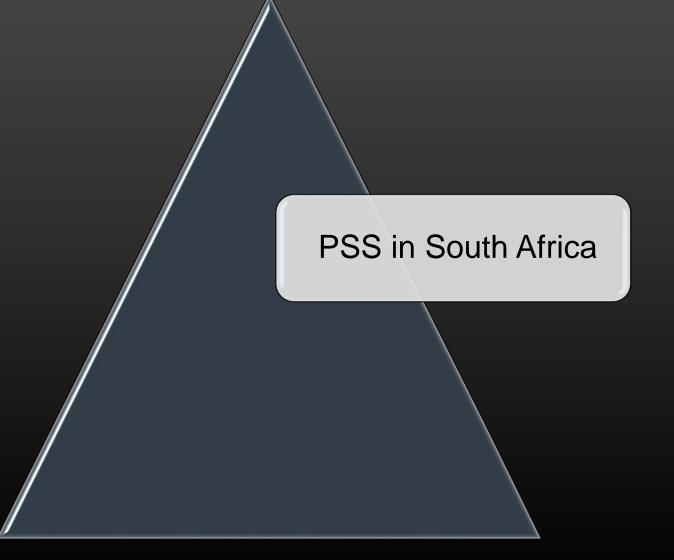
F

PSS Worldwide Yearly Increased Capacity

PSS Worldwide Yearly Increased Capacity

China, PSS was seen as beneficial for grid reliability, to assist with bridging the gap for on and off peak demand and was regarded as a way to aid renewable energy integration.

PSS increase again, driven by the need for increased flexibility and reduced curtailment of wind and solar PV.


Value of Pumped Storage Schemes

PSS Cost Comparison

Blakers et al. 2017 Voith 2018 Entura 2018 (6hrs) PHES (48hrs) Enel 2018 \$560/kW \$1290/kW \$1036/kW \$1925/kW \$2000/kW

- Value of bulk power capacity and energy arbitrage,
- Value of PSS ancillary services,
- Power system stability benefits,
- PSS impacts on reducing system cycling and ramping costs,
- Reduction of system production costs & transmission benefits

Country	Market Type	T&D owned?	Market mechanisms used	Example PHES project
Great Britain	Liberalised market, ownership	No	Competes for market services, utilities use for	Dinorwig. 1800MW, 9.1 GWh. Owned by First Hydro.
	unbundling		internal trading	Provides frequency response, Short Term Operating
				Reserve, peak capacity, blackstart
USA	Both liberalised and partially-liberalised	No in	Competes for market services and used for internal	Bath County Pumped Hydro. 3030 MW, 24 GWh. Owned
	markets exist, with unbundling ranging	liberalised	trading in competitive markets, cost-of-service	by Dominion Power (60%) and FirstEnergy (40%).
	from accounting to none	markets	payment available in regulated markets although	Provides peak capacity, electric time shift and reliability
			lack of transparency	services.
Germany	Liberalised market and legal unbundling	No	Competes for market services, utilities use for	Goldisthal Pumped Storage Power Station. 1060 MW, 8.5
			internal trading	GWh. Provides peak capacity, Voltage Support,
				Frequency Regulation and Black Start services. First
				European plant to include variable speed pumps. Owned
				by Vattenfall.
China	Partially liberalised market, legal	Yes	Tariffs approved for individual projects based on	Tianhuangping Pumped Storage Power Station. 1836MW,
	unbundling		average costs or a cost-plus system (includes single	~13 GWh. Owned by East China Electric Power
			capacity based mechanism, T&D tariff, two-part	(subsidiary SGCC). Used to stabilise power grid, improve
			price mechanism, single energy-based price	power supply quality in east China, and ensure safe grid
			mechanism)	operation
Japan	Partially liberalised market, accounting	Yes	Cost-of-service payments and market participation	Okutataragi Pumped Storage Power Station. 1932 MW.
	unbundling			Used as a T&D asset. Owned by Kansai Electric Power
				Company.
India	Competitive market, legal unbundling	Yes	Competes in electricity market. Long term PPA's to	Tehri Pumped Storage Plant. 1000 MW. Provides peak
			provide peak power.	capacity. Being developed by THDC India, a joint venture
				of the Indian Government and the State Government of
				Uttar Pradesh

Operational Advantages of Pumped Storage

Pumped storage offers flexibility, ramping speed and "demand" over low loading periods.

Compensates for the slow ramp rates of OCGTs and coal fired generators, ramp up for morning /evening peaks.

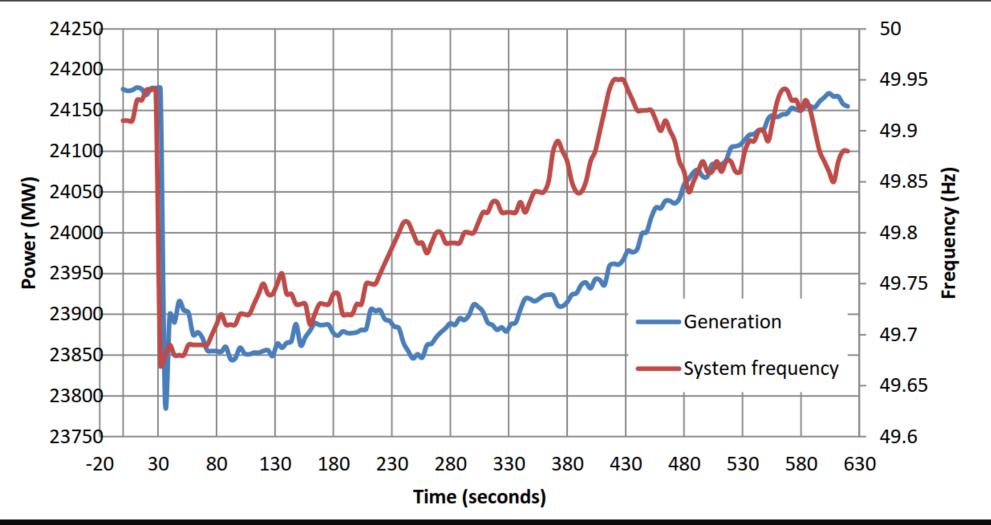
Assists the night minimum period, allows base load generators to remain synchronised to the power system by adding demand to the system.

SCO mode to add inertia and voltage control capability to the network. This decreases fault levels in the network and smooths out variation in voltage.

Blackstart facility as well as to arrest frequency drop following a severe frequency event.

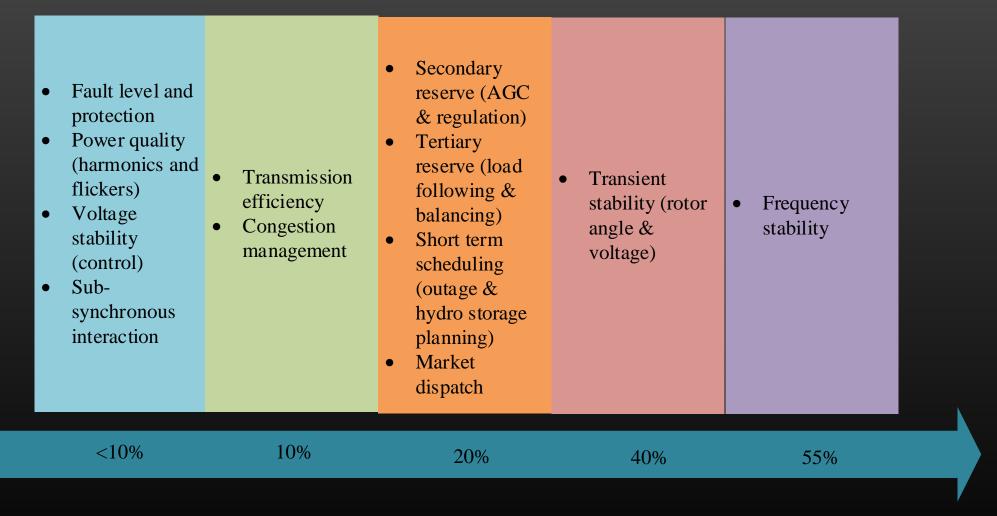
Ramp Rates for Different	ent Generation Technologies
OCGT Ramn Rate	5-50MW per minute

CCGT Ramp Rate	1-26MW per minute
PSS Ramp Rate	200MW per minute

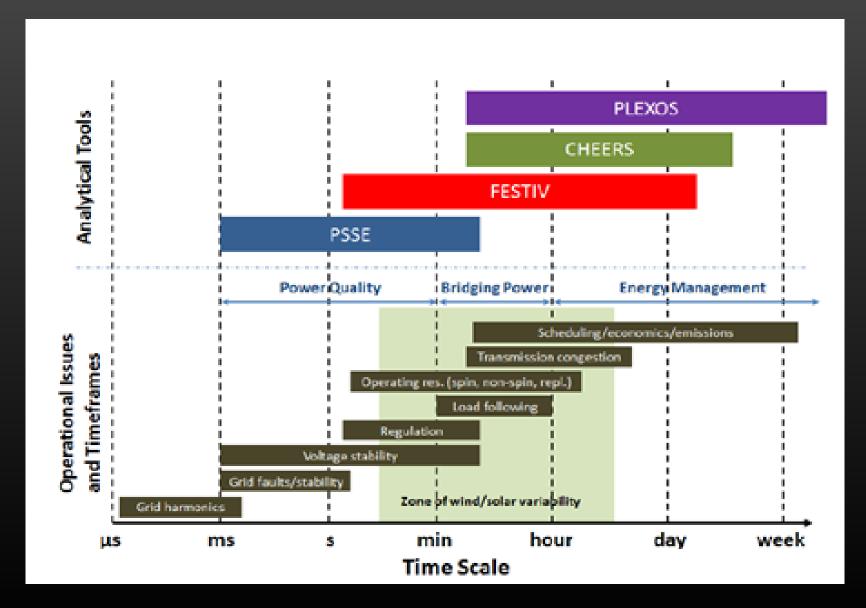

CoalRamp Rate0.2-22MW per minute

Nuclear Ramp Rate

20MW per minute


Eskom has the following flexible resources: 2.7GW PSS, 3GW OCGT, 14 GW coal fired plants and Demand Response Resources.

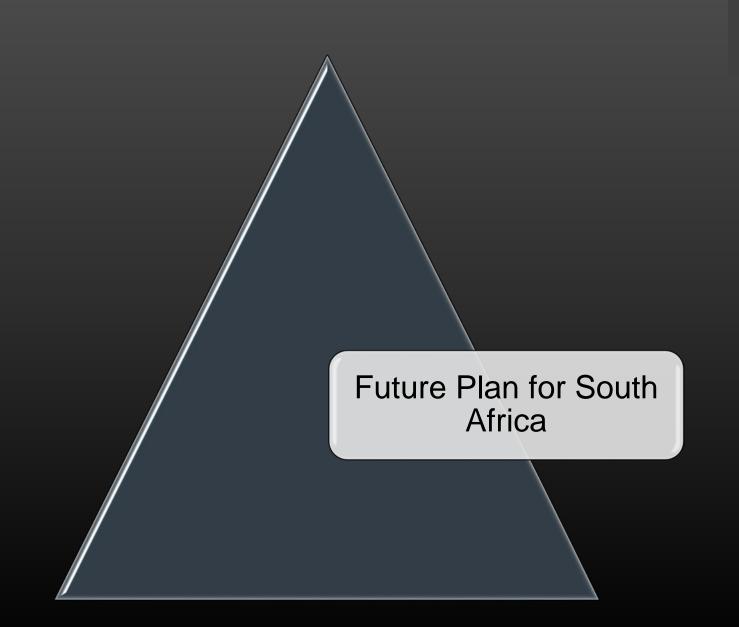
Activation of Reserve to Restore Frequency


A low frequency incident caused by a unit trip, extracted from Eskom SCADA system

Problems for Grid Stability with Increased Share of Renewable Generation

RE share in annual electricity generation

Energy Modelling Tools Time Frames



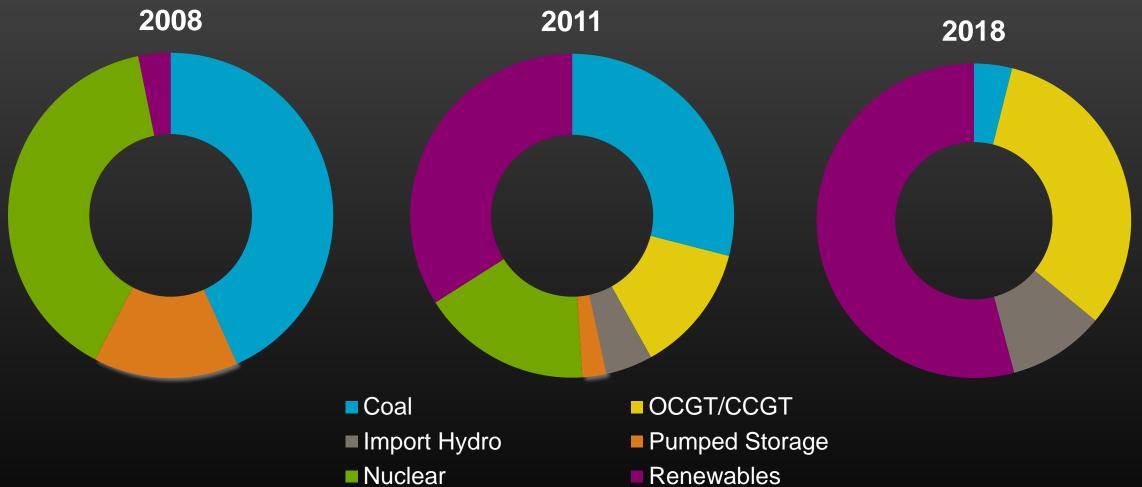
Problem with Long term Planning Tools

There is a requirement to study low-cost storage in long-term planning models, but the methodologies and metrics for representing storage are not yet well defined.

This is especially true for the interaction of variable renewable generators with storage technologies.

Issues such as chronology, capacity value and cost representation have yet to be addressed in most large-scale modelling frameworks.

Why the need for additional PSS?


			Coal-Fire	ed Plants		Nuclear Plants		Pumped Storage Plants					Renew able Plants	Total New Build	New DSM		
YR	Forecast Position (National plus Foreign) (MW)	PF (1) Medupi (6X738 MW Units)	PF (2) Bravo (6X723 MW Units)	PF (3) (6X774 MW Units)	(NX774 MW Units PF) (Proxy for additional Base	Nuclear AP 1000 (NX1039 MW Units)	Generic Co-gen	PS (A) Ingula	PS (B) Steelprt	PS (C)	PS (D)	PS (E)	Wind, CSP, Biomass, Hydro, Ocean & Wave			Reserve margin on Position	Unserved Energy on Position (GWh)
		Approved & Committed	Approved & Committed	Immediate Decision Required			Contin gency	Final Approval Pending	Immediate Decision Required	Site Selection & Prep Work							
2008 2009 2010 2011	37982 39539 41152 42867 44628				-	jula oject	17 66 375 49	Project Lima 1 st unit to commence 3Q2014 to fill energy gap (peaking to mid-merit range) and maintain planned reserve margin				220 3 230	17 478 1022 2016 49	245 617 485 313	7% 7% 10% 11% 8%	159 222 7 14	
2012 2013 2014 2015	46472 48434 50466 52556	738 738 1476 738	1446 723	1548 1548			316 77					jin	30 120 60	1387 1814 4470 4122	163 120 120 143	7% 7% 12% 15%	149 236
2016	52556 54753 57091	738	1446 723	774		1039			1113 371				300 100	3329 2536	143 143	16% 16%	
1. Me	Assumptions: 1. Medupi and Bravo project implemented in 2012&2013 respectively 2. Accelerated DSM and excluding Coega CCGT 1548 774 3096 1548		1548 774 3096	2078 2078 2078 2078 2078 2078 2078 2078				1484	1484	1484	40 200 300	2078 2078 3562 3626 3562 3626 4336 5174 3626	143 143 143 143 143 143 143 143 143	15% 14% 14% 14% 14% 14% 14% 14% 13%			
TOTA	L	4428	4338	4644	8514	19741	900	1332	1484	1484	1484	1484	1603	52908	3637	1070	

In the absence of other peaking plant, pump storage plant, reduce the rate at which base load plant need to be built in order to satisfy the increasing demand, specifically the peak demand,

It will increase the base load plant utilization level and therefore will results in higher returns compared to alternative peak generation options utilizing relatively high cost fuel (diesel oil, LNG, gas).

DМ

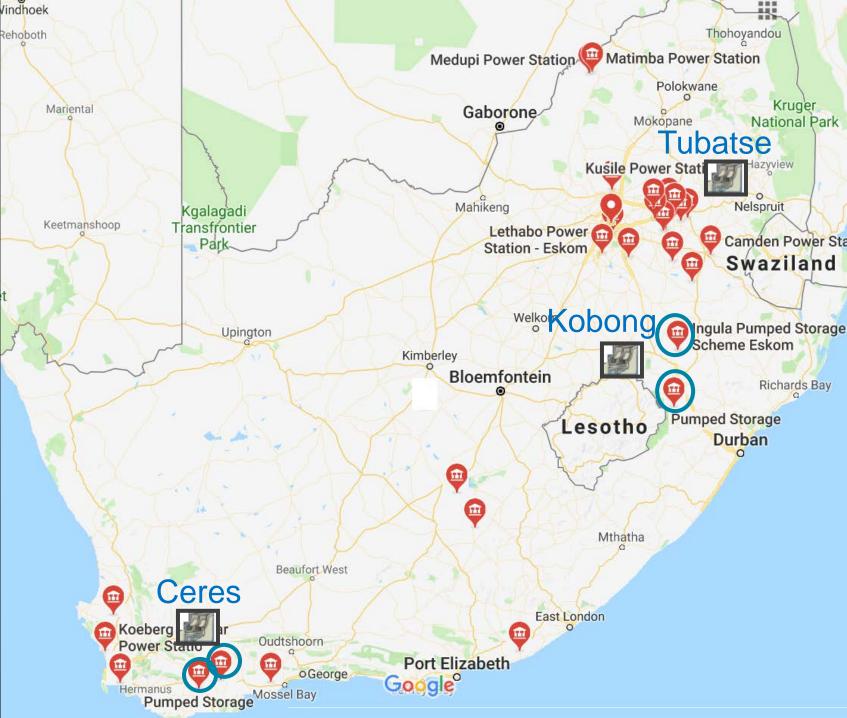
IRP Percentage Comparison

Nuclear

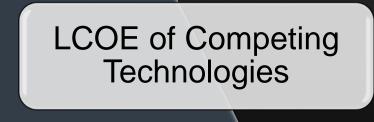
20

Pumped Storage

Total Installed:


Drakensberg: Palmiet: Steenbras: Ingula: 1000MW 400MW 180MW 1332MW

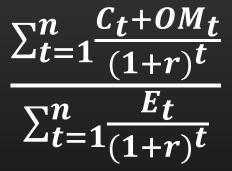
2912MW


Proposed new Schemes

- Kobong 1200MW
 Ceres 1000MW
- CeresTubatse

1000MW 1500MW

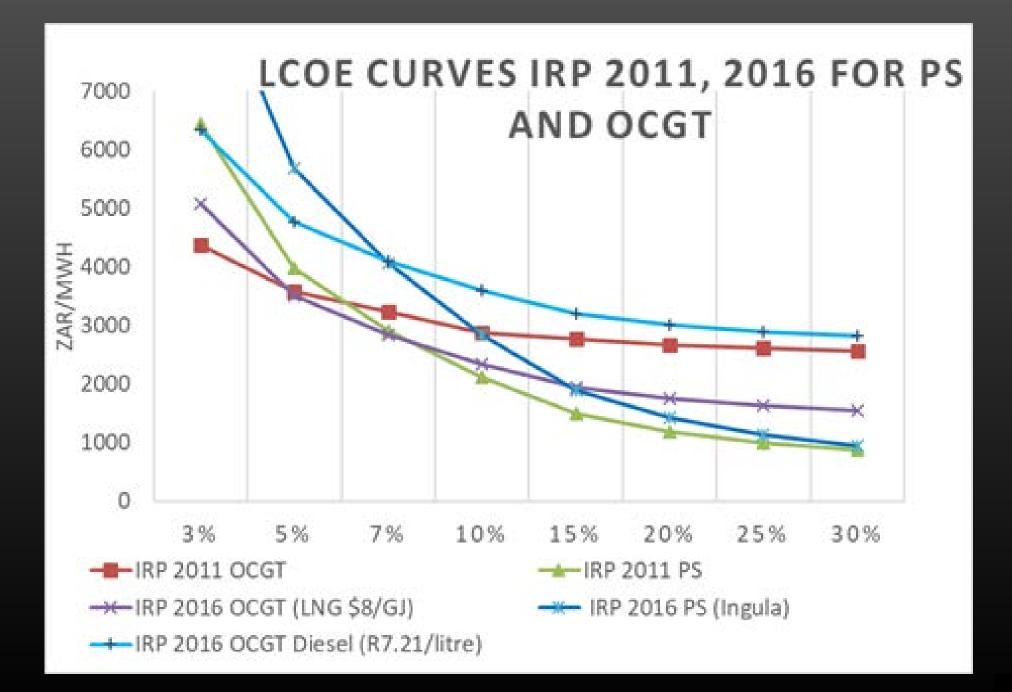
PS	MW	Billion	Years	Additional Information on Project
Ingula (Built)	1332	29.3 Overnight Cost R23000 /kW	12	Cost overruns incurred and underground accident delayed the project.
Tubatse (Lima) (2008)	1500	10 Overnight Cost R7 971/kW LCOE R525.51/MWh.	8	The lower De Hoop dam, constructed and the land for scheme bought by Eskom. The Environmental Authorisation obtained and Record of Decision previously received is still valid.
Kobong (2013)	1200	8.3	7	Kobong PSS is part of Phase II Lesotho Highlands Water Project (LHWP) agreement. Katse Dam, lower dam, already constructed from Phase I.
Ceres (2018)	1000	5	5	The higher dam (17million m ³) already constructed. Independent Power Producers willing to invest in the project.

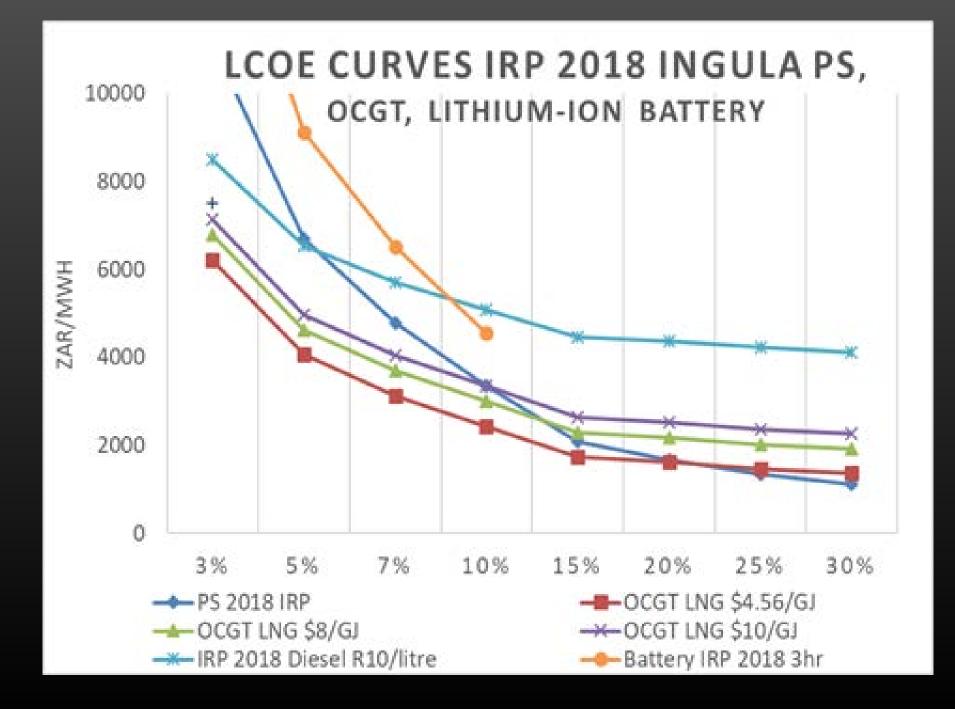


LCOE Comparison Pumped Storage Versus Gas Turbines

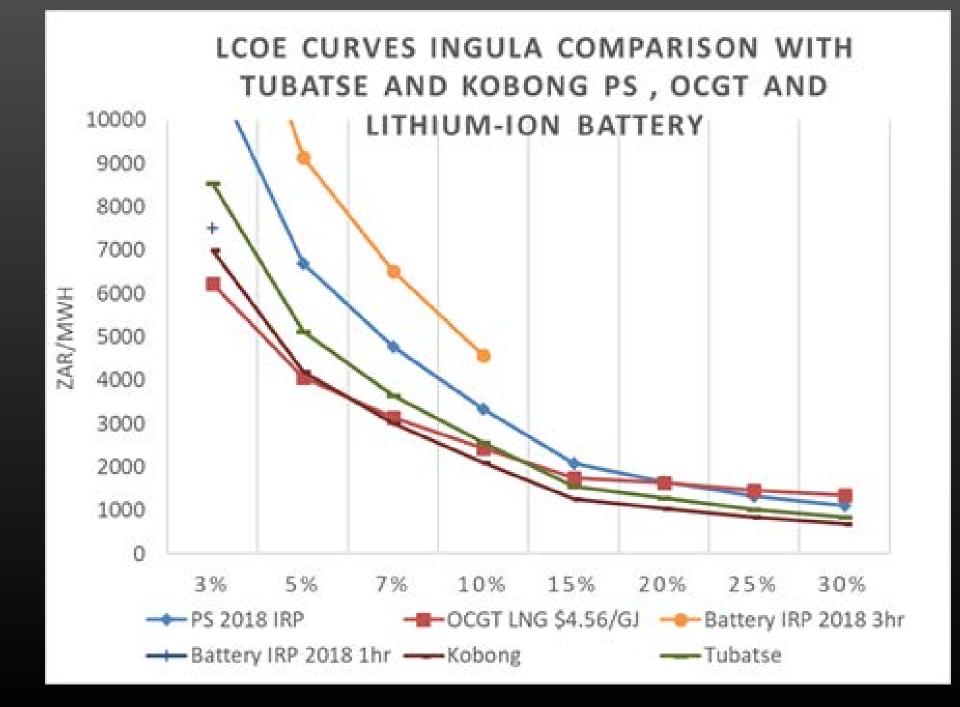
LCOE =

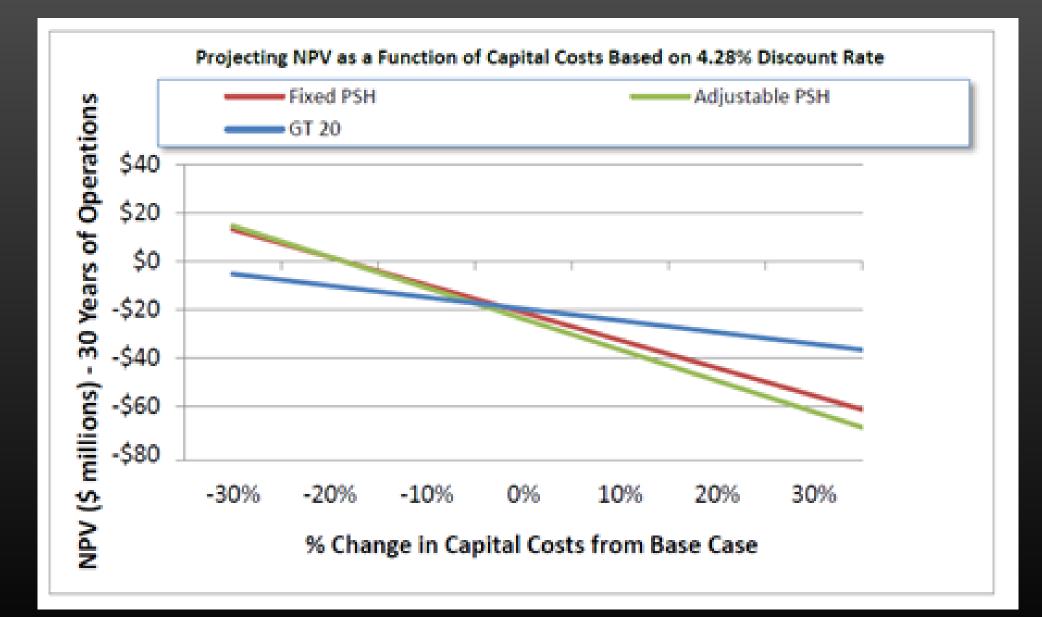
Sum of cost over lifetime

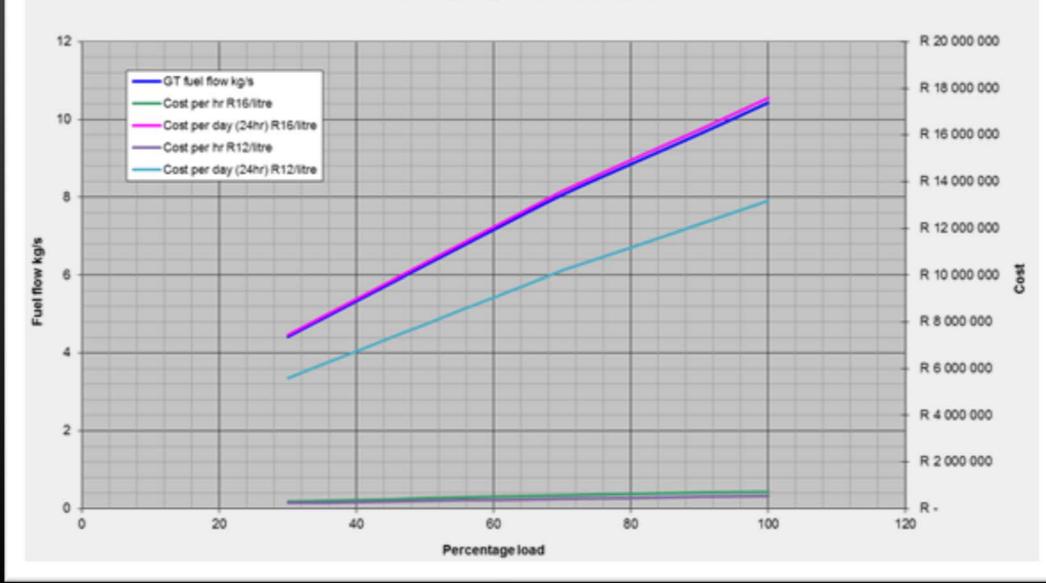

Sum of electric energy over the lifetime



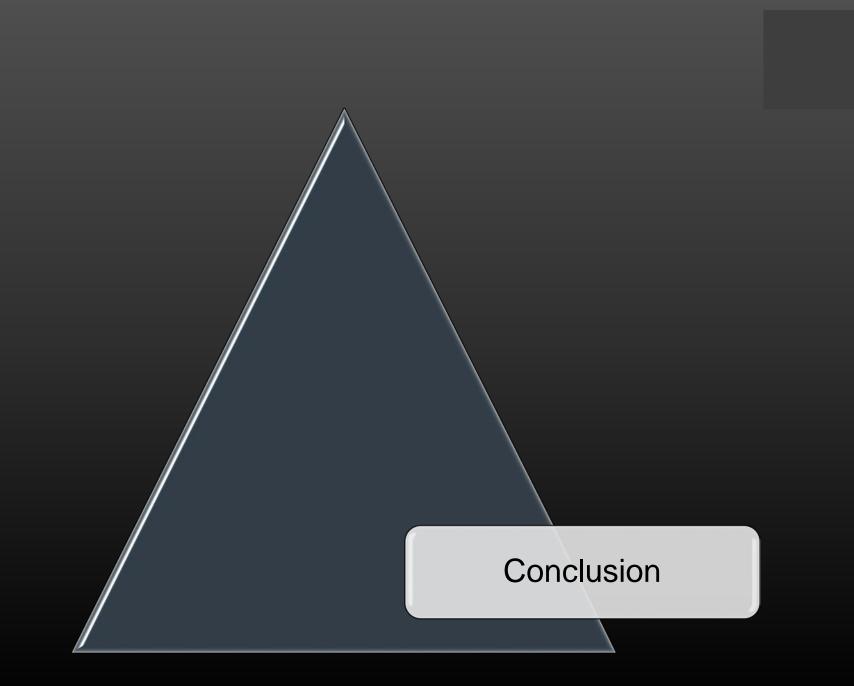
LCOE Comparison Pumped Storage Versus Gas Turbines


rechnology Input	OCGT IRP 2011 Diesel	PS IRP 2011	OCGT IRP 2016 LNG \$8/GJ	OCGT IRP 2016 Diesel	PS IR⊧ 2016
cost overnight R/kW	3955	7913	7472	7472	20410
Fuel Cost	R200/GJ	-	R115/GJ	R200/GJ	0
Capacity MW	114.7	1500	132	132	333
O&M Variable R/MWh	0	4	2.2	2.2	0
O&M Fixed R/kW/a	70	123	147	147	184
Life time of project	30	50	30	30	50
Discount rate	8	8	8.2	8.2	8.2
Phasing in Capital Spent %	90,10	3,16,17, 21,20, 14,7,2	90,10	90,10	1,2,9, 16,22, 24,20,5
22 Phasing in Capital Spent %	90,10	3,16,17, 21,20, 14,7,2	90,10	90,10	1,2,9, 16,22, 24,20,5
Uiscount rate					


echnology nput	OCGT LNG \$4.56/GJ	Ingula PS	Lithium -lon (1hr)	Lithium -lon (3hr)	Kobong PS	Tubatse PS	OCGT Diesel R10.8/I
cost overnight R/kW	9226	21997	11165	27432	13389	16446	9226
Capacity MW	132	333	3	3	1200	1500	132
O&M Variable R/MWh	2.7	0	3.6	3.6	0	0	2.7
O&M Fixed R/kW/a	181	184	697	697	184	184	181
Life time of oroject	30	50	20	20	50	50	30
Discount rate	8.2	8.2	8.2	8.2	8.2	8.2	8.2
Phasing in Capital Spent %	90,10	1,2,9, 16, 22 24,20, 5	100	100	14,8,12 17,15, 14,16	1,2,9, 16,22, 24,20,5	90,10
Capital Spent %		16, 22 24,20, 5		100	17,15, 14,16	16,22, 24,20,5	


AECOM

F


Diesel Open Cycle Gas Turbine Performance 150MWe

Flexible Generation Options

Battery Storage

- Fast response times
- 100MW Battery is been considered as a World Bank requirement
- R16000/kWh for lithium -ion battery pack in 2010 to between R8000/kWh and R4800/kWh in 2018. Market forecasts predict an even further drop to R1600/kWh by 2025. (PSS R200/kWh)
- Service life is 10 to 15 years (PSS 60 to 100 years)
- Batteries limited to < 5000 storage cycles (PSS over 50000)

Concluding Remarks

Increasing amount of intermittent electricity from renewable sources requires electricity industry introduce greater amount of flexible capacity.

South Africa currently has good sites for potential PSS in advanced stages of feasibility analysis.

Levelised Cost of Energy curves support the hypothesis that an economic case can still be made for Pumped Storage Schemes in South Africa

Further Recommended Studies

1. Addressing the value of storage that can shift energy across days which currently can not be reflected in a model that does not maintain chronology across periods longer than 24 hours

2. Costing ancillary services and the benefits PSS provides the grid for a clear understanding of the true value of this technology

3. To investigate a solution which focusses on a combination of PSS with fast response battery storage and OCGT generation maintained as a backup or support.

4. The cost estimate for Ingula investigated regarding project's budget increase -which factors will be relevant to future projects

Thank you

Caroline.VanDongen@aecom.com

